High-Resolution Side-Channel Attack Using Phase-Based Waveform Matching

Naofumi HOMMA[†], Sei NAGASHIMA[†], Yuichi IMAI[†] Takafumi AOKI[†] and Akashi SATOH[‡]

†Tohoku University, Japan ‡IBM Research, Tokyo Research Laboratory

Outline

- Why waveform matching?
- Phase-based waveform matching
- Application for side-channel attacks
- Conclusions and future prospects

Side-channel attack

Data acquisition processing

Signal

Cryptanalysis

Power dissipation **EM** radiation Operating times

Digital oscilloscope (Side-channel information→waveform) Noise reduction Information extraction

Secret information extraction

Displacement problem

Assumption:

Each waveform can be captured at the exact moment as the cryptographic computation.

Reality:

Captured waveforms include displacement errors.

- No exact trigger signal
- Trigger jitter
- Randomly inserted displacement
 - Countermeasures creating distorted waveforms

Displacement in waveforms

Displacement errors cause significant loss of the secret information when the waveforms are averaged together.

Waveform matching

Requirements:

- To handle distorted waveforms → High noise tolerance
- To match waveforms captured by a digital measuring device
 - → Higher accuracy beyond the sampling resolution

Phase-based waveform matching

Phase-Only Correlation (POC) function

K. Takita et al. IEICE Trans. Fundamentals, E86-A, No. 8, 2003

POC function has a sharp peak like a delta function.

Peak position: Translational displacement

Peak height: Similarity of waveforms

Basic computation flow for POC

Time Domain

Two input waveforms g(n)

DFT

Frequency Domain

$$F(k) = A_F(k)e^{j\theta_F(k)}$$

$$G(k) = A_G(k)e^{j\theta_G(k)}$$
Amplitude Phase

POC function

$$\hat{r}(n)$$

Cross-phase spectrum

$$\hat{R}(k) = \frac{F(k)}{|F(k)|} \cdot \frac{G(k)}{|G(k)|}$$

$$= e^{j\{\theta_F(k) - \theta_G(k)\}}$$

Displacement estimation

POC computation produces N data values.

Peak position $\delta = 0$

Peak position δ =0.5

Correlation peak model

$$\hat{r}(n) \approx \frac{\alpha}{N} \frac{\sin\{(n+\delta)\pi\}}{\sin\{(n+\delta)\frac{\pi}{N}\}}$$

 α, δ : fitting parameters

Example of waveform matching

Example of waveform matching

Estimated displacements

The waveforms contain displacement errors even though they were captured by using a trigger signal.

Side-channel attacks with phase-based waveform matching

Phase-based waveform matching: a pre-processing step followed by waveform analysis

Proposed differential analysis

Experiment

DPA and DEMA against DES module

Experimental condition

- DES software implementation on a microprocessor
- Clock frequency: 8MHz
- Trigger signal at the beginning of Round 15
- Four sampling frequencies: 100MHz, 200MHz, 400MHz, 1GHz

Evaluation board (INSTAC-8)

EM probing

Example of power trace

1000 waveforms were measured during encryption of 1000 random plaintexts for each sampling frequency. 16

Error rates of DPAs

The proposed DPA improved the error rates of finding correct subkeys in comparison with the conventional DPA.

17

Example of DPAs

Sampling rate: 200MHz, Number of waveforms: 1000

The proposed attack succeeded at a low sampling rate while the conventional attack failed.

Error rates of DEMAs

Proposed waveform matching can also be effective for DEMA.

Computation cost

Total 251 minutes

Waveform matching: 2%

Measuring device

Oscilloscope:

Agilent DSO6104A

Sampling rate: 200M Sa/s

of waveforms: 1000

PC environment

CPU: Pentium4 3.2GHz

Memory: 2GB

OS: Windows XP

Software: MATLAB 7.1

Conclusions

High-resolution side-channel attacks using phase-based waveform matching

- Detect displacement errors with higher resolution than the sampling resolution
- Improve the accuracy of differential analysis
 - Additional computation cost is less than 3%.
- Have high availability
 - POC pre-process is simply applied to captured waveforms before cryptanalysis.

Future prospects

Data Signal Cryptacquisition processing analysis

Side-channel attack using advanced signal processing

- Independent of cipher algorithms, implementations, and kind of side-channel information
- Efficient for attacking actual cryptographic modules
- Defeat some hardware countermeasures